11 research outputs found

    A Practical Guide to Surface Kinetic Monte Carlo Simulations

    Get PDF
    This review article is intended as a practical guide for newcomers to the field of kinetic Monte Carlo (KMC) simulations, and specifically to lattice KMC simulations as prevalently used for surface and interface applications. We will provide worked out examples using the kmos code, where we highlight the central approximations made in implementing a KMC model as well as possible pitfalls. This includes the mapping of the problem onto a lattice and the derivation of rate constant expressions for various elementary processes. Example KMC models will be presented within the application areas surface diffusion, crystal growth and heterogeneous catalysis, covering both transient and steady-state kinetics as well as the preparation of various initial states of the system. We highlight the sensitivity of KMC models to the elementary processes included, as well as to possible errors in the rate constants. For catalysis models in particular, a recurrent challenge is the occurrence of processes at very different timescales, e.g. fast diffusion processes and slow chemical reactions. We demonstrate how to overcome this timescale disparity problem using recently developed acceleration algorithms. Finally, we will discuss how to account for lateral interactions between the species adsorbed to the lattice, which can play an important role in all application areas covered here.Comment: This document is the final Author's version of a manuscript that has been peer reviewed and accepted for publication in Frontiers in Chemistry. To access the final edited and published work see https://www.frontiersin.org/articles/10.3389/fchem.2019.00202/abstrac

    Adsorption and reactivity of halogenated hydrocarbons on metal and semiconductor surfaces

    Get PDF
    We investigated the adsorption and reactivity of substituted hydrocarbons on Si and Cu surfaces using Grimme’s vdW–corrected DFT, CI–NEB and STM simulations. Halogenated hydrocarbons on surfaces are systems of particular interest. These molecules adsorb and self–assembly at surfaces and many experimental works show that, if one provides energy to the complex, in the form of heat, light, or electrons dropped with an STM tip, they easily react resulting in single, or patterns of, chemisorbed atoms at specific and controllable sites. For instance, 1–chloropentane forms asymmetric (A) and symmetric (S) pairs on Si(001)–2×1. The rate of thermal reaction of A is greater than S in chlorinating room-temperature silicon. The energy threshold for electron–induced reaction is also different. We have used DFT and NEB tools to explain the features of this system and we simulated STM images in agreement with the experiments. On the other hand, diiodobenzenes physisorbed on Cu(110) can act as molecular calipers. We have computationally modelled the adsorption of 1,3-diiodobenzene (m–DIB) on Cu(110) and simulated STM images for the four most stable configurations using the Tersoff–Hamann approach at different bias voltages. We find that all the adsorption orientations have comparable energy and we discuss the relative probabilities of experimental observation as well as the structural details. We have furthermore compared the electronic ground–state reactivity of 1,3– and 1,4–diiodobenzene in order to show that the different symmetry of the initial adsorbed state greatly affects reactivity. Since the studied systems provide a means to surface functionalization via site–specific imprinting of single atoms, we also propose a model for Cu nanoclusters on Cu(110) supported by one or two chemisorbed S (or Cl) atoms

    Systematic Comparison of Genetic Algorithm and Basin Hopping Approaches to the Global Optimization of Si(111) Surface Reconstructions

    Get PDF
    We present a systematic study of two widely used material structure prediction methods, the Genetic Algorithm and Basin Hopping approaches to global optimization, in a search for the 3 × 3, 5 × 5, and 7 × 7 reconstructions of the Si(111) surface. The Si(111) 7 × 7 reconstruction is the largest and most complex surface reconstruction known, and finding it is a very exacting test for global optimization methods. In this paper, we introduce a modification to previous Genetic Algorithm work on structure search for periodic systems, to allow the efficient search for surface reconstructions, and present a rigorous study of the effect of the different parameters of the algorithm. We also perform a detailed comparison with the recently improved Basin Hopping algorithm using Delocalized Internal Coordinates. Both algorithms succeeded in either resolving the 3 × 3, 5 × 5, and 7 × 7 DAS surface reconstructions or getting “sufficiently close”, i.e., identifying structures that only differ for the positions of a few atoms as well as thermally accessible structures within kBT/unit area of the global minimum, with T = 300 K. Overall, the Genetic Algorithm is more robust with respect to parameter choice and in success rate, while the Basin Hopping method occasionally exhibits some advantages in speed of convergence. In line with previous studies, the results confirm that robustness, success, and speed of convergence of either approach are strongly influenced by how much the trial moves tend to preserve favorable bonding patterns once these appear

    Global materials structure search with chemically motivated coordinates

    Get PDF
    Identification of relevant reaction pathways in ever more complex composite materials and nanostructures poses a central challenge to computational materials discovery. Efficient global structure search, tailored to identify chemically relevant intermediates, could provide the necessary first-principles atomistic insight to enable a rational process design. In this work we modify a common feature of global geometry optimization schemes by employing automatically generated collective curvilinear coordinates. The similarity of these coordinates to molecular vibrations enhances the generation of chemically meaningful trial structures for covalently bound systems. In the application to hydrogenated Si clusters, we concomitantly observe a significantly increased efficiency in identifying low-energy structures and exploit it for an extensive sampling of potential products of silicon-cluster soft landing on Si(001) surfaces

    Global structure search for molecules on surfaces : efficient sampling with curvilinear coordinates

    Get PDF
    Efficient structure search is a major challenge in computational materials science. We present a modification of the basin hopping global geometry optimization approach that uses a curvilinear coordinate system to describe global trial moves. This approach has recently been shown to be efficient in structure determination of clusters [C. Panosetti et al., Nano Lett. 15, 8044–8048 (2015)] and is here extended for its application to covalent, complex molecules and large adsorbates on surfaces. The employed automatically constructed delocalized internal coordinates are similar to molecular vibrations, which enhances the generation of chemically meaningful trial structures. By introducing flexible constraints and local translation and rotation of independent geometrical subunits, we enable the use of this method for molecules adsorbed on surfaces and interfaces. For two test systems, trans-ÎČ-ionylideneacetic acid adsorbed on a Au(111) surface and methane adsorbed on a Ag(111) surface, we obtain superior performance of the method compared to standard optimization moves based on Cartesian coordinates

    Learning to Use the Force: Fitting Repulsive Potentials in Density-Functional Tight-Binding with Gaussian Process Regression

    No full text
    The Density-Functional Tight Binding (DFTB) method is a popular semiempirical approximation to Density Functional Theory (DFT). In many cases, DFTB can provide comparable accuracy to DFT at a fraction of the cost, enabling simulations on length- and time-scales that are unfeasible with first principles DFT. At the same time (and in contrast to empirical interatomic potentials and force-fields), DFTB still offers direct access to electronic properties such as the band-structure. These advantages come at the cost of introducing empirical parameters to the method, leading to a reduced transferability compared to true first-principle approaches. Consequently, it would be very useful if the parameter-sets could be routinely adjusted for a given project. While fairly robust and transferable parameterization workflows exist for the electronic structure part of DFTB, the so-called repulsive potential Vrep poses a major challenge. In this paper we propose a machine-learning (ML) approach to fitting Vrep, using Gaussian Process Regression (GPR). The use of GPR circumvents the need for non-linear or global parameter optimization, while at the same time offering arbitrary flexibility in terms of the functional form. We also show that the proposed method can be applied to multiple elements at once, by fitting repulsive potentials for organic molecules containing carbon, hydrogen and oxygen. Overall, the new approach removes focus from the choice of functional form and parameterization procedure, in favour of a data-driven philosophy

    Revisiting the storage capacity limit of graphite battery anodes: spontaneous lithium overintercalation at ambient pressure

    No full text
    The market quest for fast-charging, safe, long-lasting and performant batteries drives the exploration of new energy storage materials, but also promotes fundamental investigations of materials already widely used. Presently, revamped interest in anode materials is observed -- primarily graphite electrodes for lithium-ion batteries. Here, we focus on the upper limit of lithium intercalation in the morphologically quasi-ideal highly oriented pyrolytic graphite (HOPG), with a LiC6_6 stoichiometry corresponding to 100\% state of charge (SOC). We prepared a sample by immersion in liquid lithium at ambient pressure and investigated it by static 7^7Li nuclear magnetic resonance (NMR). We resolved unexpected signatures of superdense intercalation compounds, LiC6−x_{6-x}. These have been ruled out for decades, since the highest geometrically accessible composition, LiC2_2, can only be prepared under high pressure. We thus challenge the widespread notion that any additional intercalation beyond LiC6_6 is not possible under ambient conditions. We monitored the sample upon calendaric aging and employed ab initio calculations to rationalise the NMR results. The computed relative stabilities of different superdense configurations reveal that non-negligible overintercalation does proceed spontaneously beyond the currently accepted capacity limit
    corecore